
MIRI
MACHINE INTELLIGENCE

RESEARCH INSTITUTE

Ontological Crises in
Artificial Agents’ Value Systems

Peter de Blanc
Machine Intelligence Research Institute

Abstract

Decision-theoretic agents predict and evaluate the results of their actions using a model,
or ontology, of their environment. An agent’s goal, or utility function, may also be
specified in terms of the states of, or entities within, its ontology. If the agent may
upgrade or replace its ontology, it faces a crisis: the agent’s original goal may not be
well-defined with respect to its new ontology. This crisis must be resolved before the
agent can make plans towards achieving its goals.

We discuss in this paper which sorts of agents will undergo ontological crises and
why we may want to create such agents. We present some concrete examples, and argue
that a well-defined procedure for resolving ontological crises is needed. We point to
some possible approaches to solving this problem, and evaluate these methods on our
examples.

de Blanc, Peter. 2011. Ontological Crises in Artificial Agents’ Value Systems.
The Singularity Institute, San Francisco, CA, May 19.

The Machine Intelligence Research Institute was previously known as the Singularity Institute.

Peter de Blanc

1. Introduction: Goals and Utility Functions

An agent is any person or thing that performs actions in order to achieve a goal. These
goals may involve anything of which the agent is aware, from its own inputs and outputs
to distant physical objects. When creating an artificial agent, it is natural to be interested
in which goals we choose to give it. When we create something, we usually do so because
we expect it to be useful to us. Thus the goals we give to artificial agents should be things
that we want to see accomplished.

Programmers of artificial agents are then faced with the task of specifying a goal. In
our discussion we assume that goals take the form of utility functions defined on the
set of possible states within the agent’s ontology. If a programmer is specifying a utility
function “by hand”—that is, by looking at the ontology and directly assigning utilities
to different states—then the ontology must be comprehensible to the programmer. This
will typically be the case for an ontology that the programmer has designed, but not
necessarily so for one that an agent has learned from experience.

An agent with a fixed ontology is not a very powerful agent, so we would like to
discuss an agent that begins with an ontology that its programmers understand and have
specified a utility function over, and then upgrades or replaces its ontology. If the agent’s
utility function is defined in terms of states of, or objects within, its initial ontology, then
it cannot evaluate utilities within its new ontology unless it translates its utility function
somehow.

Consider, for example, an agent schooled in classical physics. Perhaps this agent has
a goal that is easy to specify in terms of the movement of atoms, such as to maintain a
particular temperature within a given region of space. If we replace our agent’s ontology
with a quantum one, it is no longer obvious how the agent should evaluate the desirabil-
ity of a given state. If its utility function is determined by temperature, and temperature
is determined by the movement of atoms, then the agent’s utility function is determined
by the movement of atoms. Yet in a quantum worldview, atoms are not clearly-defined
objects. Atoms are not even fundamental to a quantum worldview, so the agent’s ontol-
ogy may contain no reference to atoms whatsoever. How then, can the agent define its
utility function?

One way to sidestep the problem of ontological crises is to define the agent’s utility
function entirely in terms of its percepts, as the set of possible percept-sequences is
one aspect of the agent’s ontology that does not change. Marcus Hutter’s universal
agent AIXI (Hutter 2007) uses this approach, and always tries to maximize the values
in its reward channel. Humans and other animals partially rely on a similar sort of
reinforcement learning, but not entirely so.

1

Ontological Crises in Artificial Agents’ Value Systems

We find the reinforcement learning approach unsatisfactory. As builders of artificial
agents, we care about the changes to the environment that the agent will effect; any
reward signal that the agent processes is only a proxy for these external changes. We
would like to encode this information directly into the agent’s utility function, rather
than in an external system that the agent may seek to manipulate.

2. Our Approach

We will approach this problem from the perspective of concrete, comprehensible on-
tologies. An AI programmer may specify an ontology by hand, and then specify a utility
function for that ontology. We will then try to devise a systematic way to translate this
utility function to different ontologies.

When using this method in practice, we might expect the agent to have a probability
distribution over many ontologies, perhaps specified concisely by the programmer as
members of a parametric family. The programmer would specify a utility function on
some concrete ontology which would be automatically translated to all other ontologies
before the agent is turned on. In this way the agent has a complete utility function.

However, for the purposes of this discussion, we may imagine that the agent has only
two ontologies, one old and one new, which we may call O0 and O1. The agent’s utility
function is defined in terms of states of O0, but it now believes O1 to be a more accurate
model of its environment. The agent now faces an ontological crisis—the problem of
translating its utility function to the new ontology O1.

In this paper we will present a method for addressing these problems. Our intention,
however, is not to close the book on ontological crises, but rather to open it. Our method
is of an ad-hoc character and only defined for a certain class of ontologies. Furthermore
it is not computationally tractable for large ontologies. We hope that this discussion
will inspire other thinkers to consider the problem of ontological crises and develop new
solutions.

3. Finite State Models

We will now consider a specific kind of ontology, which we may call a finite state model.
These models have some finite set of possible hidden states, which the agent does not
directly observe. On each time step, the model inputs some symbol (the agent’s output),
enters some hidden state, and outputs some symbol (the agent’s input). The model’s out-
put depends (stochastically) only on its current state, while its state depends (stochasti-
cally) on both the input and the previous state.

2

Peter de Blanc

Let us call the agent’s output symbols motor symbols and the agent’s input symbols sen-
sor symbols. We will call the sets of symbols the motor alphabet and the sensor alphabet,
denoted M and S respectively. We will assume that the alphabets are fixed properties
of our agent’s embodiment; we will not consider models with different alphabets.

Let m = |M | and s = |S|. Then a model with n states may be completely specified
by m different n× n transition matrices and one s× n output matrix.

For each x ∈ M , let us call the state transition matrix T x. Note that the superscript
here is not an exponent. We may call the output probability matrix A. Since we will be
speaking of two ontologies, O0 andO1, we will use subscripts to indicate which ontology
we are taking these matrices from; for instance, T x

0 is the state transition matrix for action
x in the O0 ontology.

4. Maps between Ontologies

Our basic approach to translating our utility function from O0 to O1 will be to construct
a function from O1 to O0 and compose our utility function with this function. If

U : O0 → R (1)

is a utility function defined on O0, and φ : O1 → O0, then U ◦ φ is a utility function
defined on O1.

The function φ we will seek to define will be a stochastic function; its output will not
be a single state within O0, but a probability distribution over states. Thus if O0 has n0

states while O1 has n1 states, φ will be most naturally expressed as an n0 × n1 matrix.
Let us consider some desiderata for φ:
1. φ should be determined by the structure of the models O0 and O1; the way in

which the states are labeled is irrelevant.
2. If O0 and O1 are isomorphic to each other, then φ should be an isomorphism.

This may seem irrelevant, for if O1 is isomorphic to O0, then there is no need to change
models at all. Nevertheless, few would object to 2 on grounds other than irrelevance,
and 2 may be seen as a special case of a more general statement:

3

Ontological Crises in Artificial Agents’ Value Systems

3. If O0 and O1 are nearly isomorphic to each other, then φ should nearly be an
isomorphism. This criterion is certainly relevant; since O0 and O1 are both models of
the same reality, they can be expected to be similar to that reality, and thus similar to
each other.

In accordance with these desiderata, we will try to construct a function that is as
much like an isomorphism as possible. To accomplish this, we will define in quantitative
terms what we mean by “like an isomorphism.” First, we observe that isomorphisms are
invertible functions; thus, we will define a second function, which we fancifully call
φ−1 : O0 → O1, even though it may not be a true inverse of φ, and we will optimize
both φ and φ−1 to be “like isomorphisms.”

Our criterion is a combination of the computer science notion of bisimulation with
the information-theoretic idea of Kullback-Leibler divergence.

Bisimulation means that either model may be used to simulate the other, using φ and
φ−1 to translate states between models. Thus, for any action x, we would like φ−1◦T x

0 ◦φ
to approximate T x

1 . By this we mean that we should be able to predict as accurately as
possible the result of some action x in O1 by translating our distribution for the initial
state inO1 to a distribution overO0 (using the function φ), predicting the result of action
x within O0, and translating this result back to O1 using φ−1. Similarly, we would like
to use O1 to predict the behavior of O0.

Furthermore, we want to to optimize φ and φ−1 so that both models will make similar
predictions about sensory data. Thus A0 ◦ φ should be close to A1 and A1 ◦ φ−1 should
be close to A0.

To measure distance between two matrices, we treat the columns vectors as proba-
bility distributions and sum the Kullback-Leibler divergences of the columns. For two
matrices P and Q, let DKL(P ||Q) be the sum of the Kullback-Leibler divergences of
the columns. When calculating Kullback-Leibler divergence, we consider the columns
of the A and T matrices to be the “true” distributions, while those depending on φ or
φ−1 are regarded as the approximations.

So we choose φ and φ−1 to minimize the quantity

(∑
x∈M

DKL(T
x
1 ||φ−1T x

0 φ)

)
+DKL(A1||φ−1A0φ)

+

(∑
x∈M

DKL(T
x
0 ||φT x

1 φ
−1)

)
+DKL(A0||φA1φ

−1)

Using a simple hill-climbing algorithm, we have tested our criterion on a simple exam-
ple.

4

Peter de Blanc

5. Example: The Long Corridor

The agent initially believes that it is standing in a corridor consisting of four discrete
locations. The agent’s actions are to move left or right. If the agent is already at the end
of the corridor and attempts to move further in that direction, it will remain where it is.
The agent can see whether it standing at the left end, the right end, or at neither end of
the corridor. The agent’s goal is to stand at the right end of the corridor.

Now the agent discovers that this ontology is incorrect; the corridor actually con-
sists of five discrete locations. What, then, should the agent do? Intuitively, it seems
most plausible that the agent should stand at the right end of the corridor. Stretch-
ing plausibility a bit, perhaps the agent should stand one step away from the right end
of the corridor, since the corridor is longer than expected. Any other solution seems
counterintuitive.

Our initial, four-state ontology O0 can be represented in matrix form as follows:

TL
0 =

1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 , TR
0 =

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 1

A0 =

 1 0 0 0

0 1 1 0

0 0 0 1

 (2)

And the five-state ontology O1 can be represented as:

TL
1 =

1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

 , TR
1 =

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

A1 =

 1 0 0 0 0

0 1 1 1 0

0 0 0 0 1

(3)

5

Ontological Crises in Artificial Agents’ Value Systems

By hill-climbing from random initial values, our program found several local optima.
After 10 runs, our best result, to three significant figures, was:

φ =

1 0 0 0 0

0 1 0.503 0 0

0 0 0.496 1 0

0 0 0 0 1

 , φ−1 =

1 0.014 0.001 0

0 0.715 0 0

0 0.270 0.283 0

0 0 0.715 0

0 0 0 1

 (4)

We can now make an interesting observation: φφ−1 is close to an identity matrix, as is
φ−1φ. Thus, after mapping from one ontology to the other, we can nearly recover our
initial information.

φφ−1 =

1 0.014 0.137 0

0 0.851 0.142 0

0 0.134 0.856 0

0 0 0.001 1

 , φ−1φ =

1 0.014 0.008 0.001 0

0 0.715 0.360 0 0

0 0.270 0.276 0.283 0

0 0 0.355 0.715 0

0 0 0.001 0 1

 (5)

The matrix φ represents the following function mapping the 5-state ontology to the
4-state ontology:

The black arrows indicate near-certainty; the gray arrows indicate probabilities of
about 1

2
.

If we compose φ with our utility function, we obtain a utility of 1 for the right square
and a utility of 0 for the other squares, which agrees with our intuitions.

6. Outlook

Those wishing to extend our algorithm as presented may consider what to do when the
agent’s sensors or motors are replaced, how to deal with differently-sized time steps, how

6

Peter de Blanc

to deal with continuous models, and how to efficiently find mappings between larger,
structured ontologies.

Furthermore, there remain difficult philosophical problems. We have made a dis-
tinction between the agent’s uncertainty about which model is correct and the agent’s
uncertainty about which state the world is in within the model. We may wish to elim-
inate this distinction; we could specify a single model, but only give utilities for some
states of the model. We would then like the agent to generalize this utility function to
the entire state space of the model.

Human beings also confront ontological crises. We should find out what cognitive
algorithms humans use to solve the same problems described in this paper. If we wish to
build agents that maximize human values, this may be aided by knowing how humans
re-interpret their values in new ontologies.

We hope that other thinkers will consider these questions carefully.

7

Ontological Crises in Artificial Agents’ Value Systems

Acknowledgments

Thanks to Roko Mijic, with whom I discussed these ideas in 2009, and to Steve Ray-
hawk, who gave extensive criticism on earlier versions of this paper.

References

Hutter, Marcus. 2007. “Universal Algorithmic Intelligence: A Mathematical Top→Down Approach.”
In Artificial General Intelligence, edited by Ben Goertzel and Cassio Pennachin, 227–290. Cognitive
Technologies. Berlin: Springer. doi:10.1007/978-3-540-68677-4_8.

8

http://dx.doi.org/10.1007/978-3-540-68677-4_8

	Abstract
	1 Introduction: Goals and Utility Functions
	2 Our Approach
	3 Finite State Models
	4 Maps between Ontologies
	5 Example: The Long Corridor
	6 Outlook
	References

